Math. What good is it?

Modern society cannot exist without sophisticated mathematics

Chris Lomont
April 6, 2011, EMU
Chris Lomont

• Research Engineer at Cybernet Systems
 – Ann Arbor
 – Uses math from arithmetic level through PhD coursework every day
 • also computer science, physics
 – Hired originally to do quantum computing
 • where all three tie together very intricately
 – Works on algorithms, security, robotics, image processing, edge of technology ideas
Introduction

• Stereotypical question from beginning math students: “when will I ever need this?”

• Take a common (yet sophisticated) piece of modern technology: iPhone
 – Analyze places math is required to make it
 – Math subjects colored in bold red

• Can do the same thing for all parts of modern life
 – technology, economics, agriculture, medicine, politics
Sound to MP3s

• What is sound?
 – Mechanics of sound

• How does the human ear work?
 – Human range 20 - 20,000 Hz
 – Decibels – measured energy
Recording Sound

• Need 20-20,000 Hz samples.
 – Nyquist-Shannon theorem:
 • Need to sample at twice the rate
 • Information Theory (founded by Shannon)
 – Thus need at least 40,000 samples per second
 • 44.1 kHz for CDs, gives 22,050 top frequency.
How to store samples?

- **Mechanism measures “back and forth”**
 - **Bit:** Binary digit stores a 0 or 1 in a base 2 number.
 - Digitized to 16 bits, represent $2^{16} = 65536$ values from -32768 to 32767, called **Pulse Code Modulation (PCM)**, invented 1937.
 - Sometimes sampled at 20 bits.
- **Playback is reverse mechanism.**
- **Now – how many bits to store a 4 minute song in stereo?**
 - $44,100 \times 2 \times 16 \times 4 \times 60 = 338,688,000$ bits (arithmetic)
What does it mean?

• 8 bits in a byte, so need $338688000/8=42$ million bytes, called 42 megabytes.

• CD holds 700 megabytes, which means $\frac{700}{42} \approx 17$ four minute songs, or a little more than 1 hour of audio.
Compression

• At 42 MB per song, on your 16GB iPhone you could only get $\frac{16000000000}{42000000}=380$ songs. What gives?

 – Model human ear
 • Some sounds cannot hear
 • Some sounds easier to hear than others
 • Two sounds at once, often cannot hear softer one.
 • Ears ringing from previous sound, can ignore later ones

 – Throw most audio out

• How do we get frequency information from audio?
Fourier Transforms

• Decompose a wave into frequency bands:

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) \]

 – Note the \(a_n \) and \(b_n \) tell how much at frequency “n”. **Fourier Analysis, Trigonometry, Analysis**

• Allows removing pieces we don’t want.

• **Compressed to 128 kb/s gives 22 fold improvement.**
Computer Science
(Math Aside #1)

• Lambda calculus: evolved out of Leibniz and Hilbert questions (1930’s) : what is computable?
• Places fundamental limits on “knowledge”
 – Gödel Incompleteness Theorems (Logic)
 – Halting Problem (Turing, 1936).
• Everything base 2, all “zeroes and ones”
 – Binary Digit “bit” – everything is 0’s and 1’s
• **Algorithms** (Discrete Math)
 – P=NP worth $1,000,000, finding a way to do NP problems in P time worth billions of $ in applications.
 – Knuth books – created TeX to format his computer books, 3168 pages so far.
Floating Point Numbers

- Computers work with approximations to real numbers, usually called floating-point numbers
- Format: sign bit, exponent, mantissa
- Value is \((-1)^{\text{sign}} \times 2^{e-bias} \times 1.\text{mantissa}\)

- Not quite like real numbers
Floating-point error

• Many common rules fail:
 – Associativity can fail: $a + (b + c) \neq (a + b) + c$
 – TI-83 says:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + 10^{-12} - 1$</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>$1 + 10^{-13} - 1$</td>
<td>0</td>
</tr>
<tr>
<td>$\sqrt{10^{-40}} = 10^{-20}$</td>
<td></td>
</tr>
<tr>
<td>$1 - 1 + 10^{-13}$</td>
<td>10^{-13}</td>
</tr>
</tbody>
</table>

• Must understand how stored and what guarantees are given by your platform to make programs that don’t fail in weird ways.
 – Numerical Analysis
Discrete Math

• Study of mathematical structures that are fundamentally discrete, rather than continuous.

• Includes or overlaps set theory, logic, combinatorics, graph theory, probability, number theory, discrete calculus, geometry, topology, game theory.

• Uses
 – Algorithms, programming languages, crypto, networking
Storage

• Memory sizes limited by physics and cost – what are they?
• Quantum mechanics (and special relativity) underlies all solid state electronics and modern technology
 – Hilbert Spaces, Operators (Functional Analysis)
• Running up against physical limits
• Stores numbers, ‘0’ and ‘1’, bytes.
iPhone

- Comes in 8GB, 16GB, 32GB
- 4.5 x 2.3 x 0.37 inches
- 960 x 640 pixels
- 137 grams
- Audio: MP3 (8-320 Kbps), other formats
- Video: H.264 and others
- Camera: 5 million pixels, JPEG, 30 fps video
- Global Positioning System (GPS)
- 3-axis gyroscope, accelerometer, digital compass
- Battery 7-14 hours
- 802.11b/g/n, Bluetooth
- Oh yeah, it is also a phone
Pictures and Video

• We did audio, now how about imagery?

• Same approach
 1. Determine how sound **light** works,
 2. Determine how **ear** **eye** works,
 3. Determine how to capture **audio images**,
 4. Determine how to store,
 5. Determine how to playback,
 6. Determine how to compress for efficiency.
Light

- Visible part of electromagnetic spectrum
 - Part of radio waves, microwaves, x-rays, all same.

- Maxwell’s laws (all vector calculus)

- Behaves as wave
 - For our purposes 😊
 - Wavelength 400-700 nm
 - White light is mix of many colors
 - Newton pressed on his eye
 - Prism

\[
\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \\
\n\nabla \cdot \vec{B} = 0 \\
\n\n\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\
\n\n\n\nabla \times \vec{B} = \mu_0 \vec{J} + \frac{\partial \vec{E}}{\partial t}
\]
Optics

- To focus images, must bend light
- Lenses, mirrors
 - Newton wrote Opticks, 1704
 - Geometry, calculus
- Aberrations
 - Coma, curvature, axis, more
 - Can prove no perfect lens possible
 - Often fixed in software (more math!)
Human Eye

- Rod – can detect a single photon
- Cone – three kinds, peak at

<table>
<thead>
<tr>
<th>Cone type</th>
<th>Name</th>
<th>Range</th>
<th>Peak wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>β</td>
<td>400–500 nm</td>
<td>420–440 nm</td>
</tr>
<tr>
<td>Medium</td>
<td>γ</td>
<td>450–630 nm</td>
<td>534–555 nm</td>
</tr>
<tr>
<td>Long</td>
<td>ρ</td>
<td>500–700 nm</td>
<td>564–580 nm</td>
</tr>
</tbody>
</table>

- Lens focuses
Camera

• Same idea: capture light in color grid
• How to capture:
 – Bayer Filter (patent, 1976)
• Final samples interpolated
 – gives each pixel Red, Green, Blue component
 – Lanczos Filter (filtering theory)

\[
L(x) = \begin{cases}
\frac{sinc(x)}{sinc\left(\frac{x}{a}\right)} & -a < x < a, x \neq 0 \\
1 & x = 0 \\
0 & \text{otherwise}
\end{cases}
\]
Camera

• CCD converts light at each sensor point to a value in 0-255 (8 bits).
• Demosaicing converts Bayer pattern to grid of red, green, blue values
Photo Size

• 8 bits each for red, green, blue:
 – Gives $2^8 = 256$ levels each of red, green, blue
 – Total $8 \times 3 = 24$ bits per pixel
 – $2^{24} = 16,777,216$ possible colors

• Storage for 12 megapixel image = 4000x3000

\[
12,000,000 \text{ pixels} \times \frac{24 \text{ bits}}{\text{pixel}} \times \frac{1 \text{ byte}}{8 \text{ bits}} = 36 \text{MB per image}
\]

• Could only fit 400 pictures on 16GB iPhone.
Display Technology

• iPhone 960x640 “pixel” display.
• Each pixel has red, green, and blue components to match the human eye.
• Think Christmas lights
 – Basics of solid state physics is another talk!
Human eye more sensitive to brightness than color, especially at high frequencies.

Convert RGB to YCrCb

\[
Y' = \frac{R_D' + 0.299 \cdot R_D' + 0.587 \cdot G_D' + 0.114 \cdot B_D'}{255}
\]

\[
C_B = 128 - (0.168736 \cdot R_D') - (0.331264 \cdot G_D') + 0.5 \cdot B_D'
\]

\[
C_R = 128 + (0.5 \cdot R_D') - (0.418688 \cdot G_D') - (0.081312 \cdot B_D')
\]

- Linear Algebra

Split image into 8x8 blocks

Average colors 2x2 blocks (loses data)

Perform Discrete Cosine Transform (DCT)
DCT

• Similar to Fourier Transform (Analysis)

\[G_{u,v} = \sum_{x=0}^{7} \sum_{y=0}^{7} \alpha(u) \alpha(v) g_{x,y} \cos \left[\frac{\pi}{8} \left(x + \frac{1}{2} \right) u \right] \cos \left[\frac{\pi}{8} \left(y + \frac{1}{2} \right) v \right] \]
Video

- HDTV is 1920x1080 pixels, 30 fps ≈ 187MB/s
- Use eye models, add motion information
- Intra frame motion prediction
 - statistics, optimization, signal analysis
Applications

- Games
 - **Physics** for lighting, motion, particle effects, cars
 - Numerical integration (**analysis**, **calculus**)
 - **Differential Equations** for motion, lighting, collisions
 - World all done through **linear algebra**
 - Quaternions for rotations (**group theory**)
 - Probabilistic methods for input (touch, motion)

- Streaming – Quality of Service (QoS) Analysis
Example – Angry Birds

• Basic 2D physics simulation
 – Motion, linear and angular momentum
 – Hindered by discrete time and floating-point math
 – Geometry, calculus, differential equations, linear algebra
Angry Birds

- Collision detection
 - significant numerical challenges to be robust
- 2D physics $x = x_0 + v_0 t + \frac{1}{2} at^2$
 - Linear, angular momentum
 - Numerical integration likely used
 - Basic Euler integration insufficient
 - $x_{i+1} = x_i + v_i \Delta t$
 - $v_{i+1} = v_i + a \Delta t$
 - Runge Kutta Integration RK4 often used
 - Higher order approximation than Euler
 - Verlet integration also used
 - Based on Taylor expansions going forward and backward in time
- Uses **Calculus** and **Differential Equations**
Font Rendering

• Curves defined as polynomials
 – Hinting for small parts
 – Each font is a little program
• Final rasterized to pixel grid
Cubic Bezier

• Four points P_0, P_1, P_2, P_3

• Parametric for $t \in [0,1]$ (analysis)
 $B(t) = (1 - t)^3 P_0 + 3(1 - t)^2 t P_1 + 3(1 - t)t^2 P_2 + t^3 P_3$

• De Casteljau Algorithm
 – Numerically stable
 – Subdivision
Probabilistic Methods

(Math Aside #2)

• Markov Models
 – statistics, graph theory, matrices, linear algebra, Mathematical modeling, stochastic modeling

• Hidden Markov Models
 – Allows learning the “hidden” state
Security

• Encryption (cryptology)
 – AES – based on finite fields
 – RSA – based on number theory
 – ECC – Elliptic Curves over finite fields
 \[y^2 = x^3 + ax + b \]
 – Hits most of abstract algebra and some algebraic geometry, ring theory.
Global Positioning System

• Each sends time, orbital info, system health
 – Per satellite atomic clock, 14 ns accuracy
 – 50 bits per second, each frame 30 seconds
 – Uses CDMA encodings

• Receiver computes distance to each satellite
 – Needs 3 naively, but too much error
 – 4+ enough.

• Needs relativity
 – Differential Geometry
GPS

• Two spheres give circle
• Circle and 3rd sphere give 2 points
• 4th gives which point and allows error correction.
Miscellaneous Features

• Speech Recognition, Language conversion, Touchscreen intent, AutoCorrect
 – Markov Models
 – Bayesian Belief
 • Predictor models
 – Learning

• Sensors
 – Digital compass
 – Accelerometer
 – 3-axis gyro
 – merged using Kalman Filtering to get knowledge
Physical

• Aesthetics
 – Outer shell case
 – Spline surfaces, subdivision, NURBS
 • Surface version of splines used for font outlines
 – **Topology, Analysis, Differential Geometry**

• Materials
 – Chemistry
 • Gorilla glass
 • Battery - lithium chemistry
 • Quantized orbitals – drive all of life
 – Semiconductors

\[Y_{l}^{m}(\theta, \varphi) = Ne^{im\varphi}P_{l}^{m}(\cos \theta) \]
\[P_{l}^{m}(x) = \frac{(-1)^{m}}{2^{l}l!} (1 - x^{2})^{\frac{m}{2}} \frac{d^{l+m}}{dx^{l+m}} (x^{2} - 1)^{l} \]
<table>
<thead>
<tr>
<th>Math Topics Employed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>Basic Algebra</td>
<td>Algorithms</td>
</tr>
<tr>
<td>Trigonometry</td>
<td>Number Theory</td>
</tr>
<tr>
<td>Basic and Advanced Probability</td>
<td>Cryptology</td>
</tr>
<tr>
<td>Calculus I,II,III</td>
<td>Abstract Algebra</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>Ring Theory</td>
</tr>
<tr>
<td>Statistics</td>
<td>Stochastic Modeling</td>
</tr>
<tr>
<td>Discrete Math (Math for CS)</td>
<td>Real and complex analysis</td>
</tr>
<tr>
<td>Functional Analysis (Hilbert)</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>Geometry (analytic, 2D, 3D)</td>
<td>Differential Geometry (and relativity)</td>
</tr>
<tr>
<td>Mathematical Modeling</td>
<td>Mathematical Logic</td>
</tr>
<tr>
<td>Fourier Analysis</td>
<td>Group Theory (Symmetric, permutation)</td>
</tr>
<tr>
<td>Information, Filtering Theory</td>
<td>Graph Theory</td>
</tr>
<tr>
<td>Topology</td>
<td>Optimization Theory</td>
</tr>
<tr>
<td>Algebraic Geometry</td>
<td>Set Theory</td>
</tr>
<tr>
<td>Game Theory</td>
<td>Combinatorics</td>
</tr>
</tbody>
</table>
THE END

Questions?
Removed Slides

• Coming next for more discussion 😊
RSA

• Ron Rivest, Adi Shamir, Leonard Adelman (1978)

1. Generate two large primes p and q such that $n = pq$ is large enough (4096 bits). Set $\phi = (p - 1)(q - 1)$

2. Choose $1 < e < \phi$ with $(e, \phi) = 1$.

3. Compute $1 < d < \phi$ with $ed \equiv 1 \pmod{\phi}$.

4. (n, e) is public key, (n, d) is private key

5. To send message m, send ciphertext $c \equiv m^e \pmod{n}$

6. To decode, compute

$$c^d \equiv m^{de} \equiv m^{1+k\phi} \equiv m(m^\phi)^k \equiv m(1)^k \equiv m \pmod{n}$$

– Last step works by Euler’s theorem
CDMA

• Each user has different random code – chosen very carefully.
• Exploits **linear algebra** to find orthogonal vectors representing data strings.
• Each code orthogonal to all others.
• Addition of signals is decode-able using clever mathematics
• Utilized broad spectrum for more room
Probabilistic Methods

Position Uncertainty → Worse over time + Combine multiple readings = Increased Accuracy
GPS

• Relativity analysis
 – Need time accuracy at receiver or 20-30 ns
 – 20,000 km orbit
 – move at 14,000 km/hr relative to ground
 – Lose 7 \(\mu s \) a day relative to Earth due to slower tick rates from Earth viewpoint
 – Gain 45 \(\mu s \) a day from curvature of space due to Earth mass slowing down clocks on Earth surface
 – Result 38 \(\mu s \) per day = 38,000 ns, huge error if not corrected

• General relativity – need **differential geometry**
 – 150 years ago **differential geometry** was abstract cutting edge pure mathematics! Now we use it in our toys. (Large parts are still cutting edge mathematics research topics)
• Zero out enough to reach the compression level you want
• Store in zigzag — most important first
• Note the blockiness of over compressed JPEG is an artifact of the 8x8 pixel blocking:
Model of “Hey Jude”

Breakdown of Lyrics to "Hey Jude"

- Na Na Na Na
- Hey Jude
- Other Words
Wireless

• 802.11 b/g/n - TODO
Wireless Phone Technology

• Cell-phone carrier gets 832 frequencies.
 • Two frequencies per call -- a duplex channel
 – typically 395 voice channels per carrier
 – 42 frequencies used for control channels

• Cells in hex grid
 – each has 6 neighbors
 – uses 1/7 of channels per cell

• Gives 56 channels per cell, so **56 users at a time per cell.**
FDMA

• Frequency Division Multiple Access
TDMA

• Time Division Multiple Access
CDMA

• Code Division Multiple Access

Transmitted signal: Data Signal XOR with the Pseudorandom
Font Rasterization
Old Fonts

- Roman capitals
 - Defined during Italian Renaissance
 - Albrecht Dürer, 1525, from four volume series on geometry.
Error Correction

• Problem: how to deal with inevitable errors?
• Bits sometimes get flipped during transmission $0 \leftrightarrow 1$

• Simple idea: repeat each bit three times and take majority vote:

$$0 \rightarrow 000 \quad \text{error!} \quad 001 \quad \text{majority vote} \rightarrow 0$$

• Corrects 1 bit errors, but at cost of tripling data requirement.
Error Correction

• Smarter: take any three bits abc and append $a \oplus b$, $a \oplus c$, $b \oplus c$ where $a, b, c \in \{0,1\}$ and \oplus is addition mod 2

 $0 \oplus 0 = 0$
 $0 \oplus 1 = 1$
 $1 \oplus 0 = 1$
 $1 \oplus 1 = 0$

• Then only doubled number of bits (three to six) but can recover any single bit flipping error (you must check).

• Question – how good can errors be fixed? Answer – very good, math is quite deep.
 – Many open problems